(a) Find a sinusoidal

(b) Use the function found in part (a) to predict the numb form
of hours of sunlight on April I

$$
\begin{aligned}
& \text { on April 1, the } 91 \text { st day the number } \\
& \text { of the year. }
\end{aligned}
$$

Discussion and Writing

31. Explain how the amplitude and period of a sinusoidal graph
(c) Draw a graph of the Chapter Review 437
(d) Look up the number of hours found in part (a). the Old Farmer's Almours of sunlight for April 1 in hours of daylight to the results found in part (c) actual
32. Find an application in your major field that leads to a sinusoidal graph. Write a paper about your findings.

Chapter Review

Things to Know

Definitions

Angle in standard position (p. 356)
1 Degree $\left(1^{\circ}\right)($ p. 357$)$
1 Radian (p. 360)

Trigonometric functions
(pp. 371-372)

Trigonometric functions using a circle of radius r (pp. 382-383)

Periodic function (p. 391)

'ormulas

$$
\begin{aligned}
1 \text { revolution } & =360^{\circ} \quad(\text { p. 358 }) \\
& =2 \pi \text { radians }(\text { p. 361 })
\end{aligned}
$$

$s=r \theta(\mathrm{p} .360)$
$A=\frac{1}{2} r^{2} \theta($ p. 364 $)$
$v=r \omega(\mathrm{p} .365)$

Vertex is at the origin; initial side is along the positive x-axis $1^{\circ}=\frac{1}{360}$ revolution

The measure of a central angle of a circle whose rays subtend an arc whose length is the
radius of the circle
$P=(x, y)$ is the point on the unit circle corresponding to $\theta=t$ radians.

$$
\begin{array}{lll}
\sin t=\sin \theta=y & \cos t=\cos \theta=x & \tan t=\tan \theta=\frac{y}{x}, \quad x \neq 0 \\
\csc t=\csc \theta=\frac{1}{y}, \quad y \neq 0 & \sec t=\sec \theta=\frac{1}{x}, \quad x \neq 0 & \cot t=\cot \theta=\frac{x}{y}, \quad y \neq 0
\end{array}
$$

For an angle θ in standard position $P=(x, y)$ is the point on the terminal side of θ that is also on the circle $x^{2}+y^{2}=r^{2}$.

$$
\begin{array}{lll}
\sin \theta=\frac{y}{r} & \cos \theta=\frac{x}{r} & \tan \theta=\frac{y}{x}, x \neq 0 \\
\csc \theta=\frac{r}{y}, \quad y \neq 0 & \sec \theta=\frac{r}{x}, \quad x \neq 0 & \cot \theta=\frac{x}{y}, \quad y \neq 0
\end{array}
$$

$f(\theta+p)=f(\theta)$, for all $\theta, p>0$, where the smallest such p is the fundamental period
θ is measured in radians; s is the length of arc subtended by the central angle θ of the circle of radius r, A is the area of the sector.
v is the linear speed along the circle of radius r, ω is the angular speed (measured in radians per unit time).

θ (Radians)	θ (Degrees)	$\boldsymbol{\operatorname { s i n }} \theta$	$\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}$	$\boldsymbol{c s c} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { s e c }} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { c o t }} \boldsymbol{\theta}$
0	0°	0	1	0	Not defined	1	Not defined
$\frac{\pi}{6}$	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2 \sqrt{3}}{3}$	$\sqrt{3}$
$\frac{\pi}{4}$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
$\frac{\pi}{3}$	60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2 \sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{2}$	90°	1	0	Not defined	1	Not defined	0
π	180°	0	-1	0	Not defined	-1	Not defined
2	270°	-1	0	Not defined	-1	Not defined	0

Fundamental Identities (p. 394)

$$
\begin{aligned}
& \tan \theta=\frac{\sin \theta}{\cos \theta}, \quad \cot \theta=\frac{\cos \theta}{\sin \theta} \\
& \csc \theta=\frac{1}{\sin \theta}, \quad \sec \theta=\frac{1}{\cos \theta}, \quad \cot \theta=\frac{1}{\tan \theta} \\
& \sin ^{2} \theta+\cos ^{2} \theta=1, \quad \tan ^{2} \theta+1=\sec ^{2} \theta, \quad 1+\cot ^{2} \theta=\csc ^{2} \theta
\end{aligned}
$$

Properties of the Trigonometric Functions
$y=\sin x \quad$ Domain: $-\infty<x<\infty$
(p -404) Range: $-1 \leq y \leq 1$
Periodic: period $=2 \pi\left(360^{\circ}\right)$
Odd function
$y=\cos x$
(p. 406)

Domain: $-\infty<x<\infty$
Range: $-1 \leq y \leq 1$
Periodic: period $=2 \pi\left(360^{\circ}\right)$
Even function $2 \pi\left(360^{\circ}\right)$

$$
\begin{array}{r}
y=\tan x \\
(\text { p. } 420)
\end{array}
$$

$$
\begin{aligned}
& \text { Periodic: peric } \\
& \text { Odd function }
\end{aligned}
$$

$$
y=\cot x
$$

$$
\text { (p. } 422 \text {) }
$$

$$
\begin{aligned}
& \text { Domain: }-\infty<x<\infty \text {, except integer multiples of } \pi\left(180^{\circ}\right) \\
& \text { Range: }-\infty<y<\infty \text {, } \\
& \text { Periodic: period }=\pi\left(180^{\circ}\right) \\
& \text { Odd function }
\end{aligned}
$$

$$
\begin{array}{cl}
y=\csc x & \text { Domain: }-\infty<x<\infty, \text { except integer multiples of } \pi\left(180^{\circ}\right) \\
\text { (p. 422) } & \text { Range: }|y| \geq 1 \\
& \text { Periodic: period }=2 \pi\left(360^{\circ}\right) \\
& \text { Odd function }
\end{array}
$$

$y=\sec x$
Domain: $-\infty<x<\infty$
(p.423)

Range: $|y| \geq 1$

inusoidal graphs (pp. 409 and 426)

$$
\begin{array}{ll}
y=A \sin (\omega x), \quad \omega>0 & \text { Period }=\frac{2 \pi}{\omega} \\
y=A \cos (\omega x), \quad \omega>0 & \text { Amplitude }=|A| \\
y=A \sin (\omega x-\phi)=A \sin \left[\omega\left(x-\frac{\phi}{\omega}\right)\right] & \text { Phase shift }=\frac{\phi}{\omega} \\
y=A \cos (\omega x-\phi)=A \cos \left[\omega\left(x-\frac{\phi}{\omega}\right)\right] &
\end{array}
$$

